A Dynamic Digital Map of Mars

Selby Cull Hampshire College

Advisor: Christopher Condit University of Massachusetts, Amherst

Abstract

A Dynamic Digital Map of Mars was produced, incorporating 682 images, 185 maps, over 85 pages of captions, and over 80 pages of articles on Mars. The DDM-Mars also incorporates interactive features such as tours, exercises, and map overlays that allow users to tour different aspects of Mars, its science, and the history of our understanding of it.

Introduction

"Data, data everywhere, but not a thought to think." ~ Jesse Shera

Facts and figures are relatively easy to come by. A simple Google or SciFinder search turns up more articles, images, and ideas than one will ever be able to sort through. For science students, looking up background information can be frustrating, time-consuming, and non-productive.

For students studying Mars, the problem is exaserbated by the vast amount of information available online, in journals, and in books. The rovers and satellites studying Mars right now send back huge amounts of data every day, much of which is indexed online.

This paper describes the initial results of a two-year project to create a Dynamic Digital Map of Mars (DDM-Mars). The purpose of the DDM-Mars is to integrate many different types of data with articles and interactive tools that allow students to explore Mars science with ease.

Dynamic Digital Maps

A Dynamic Digital Map (DDM) is an interactive software program that incorporates maps, images, movies, data, articles, interviews, animations, and class activities (Condit 1999; Condit and Boundy 2002; Condit 2000). DDMs are designed to serve many purposes, including teaching tools and data presentation. For a more detailed description on using DDMs interactively in large geology classes, see Condit (2001).

DDMs are designed to run on most computer platforms, including Macintosh OS 9 and OS X, Windows, Linux, and Unix variations. The software can be downloaded for free off the internet at <u>http://ddm.geo.umass.edu</u>. DDMs currently available include DDM-New England, DDM-Springerville Volcanic Field, DDM-Tatara-San Pedro Volcanic Complex in Chile, DDM-Moon, DDM-Holtwood PA, DDM-David Mine, and DDM-Mars.

Methods & Materials

The DDM-Mars was created using Runtime's Revolution program, a relative of the older SuperCard and HyperCard applications. Though the basic coding for the program was based on Christopher Condit's DDM-Template, a project funded by the National Science Foundation, the majority of the coding was built from scratch.

Maps

The Mars globe as divided into 37 major regions (Table 1). Five types of maps were obtained for each region:

- Viking mosaics on a cylindrical projection
- Viking mosaics on a sinusoidal projection
- Geologic maps from the NASA Lab for Terrestrial Physics Geodynamics Branch
- Thermal inertia maps from the Mars Global Surveyor Thermal Emission Spectrometer (TES)
- Topographic maps from the Mars Global Surveyor Mars Orbiting Laser Altimeter (MOLA).

Table 1: Regions

Acidalia Planitia	Planum Australe
Alba Patera	Planum Boreum
Amazonis Planitia	Promethei Terra
Aonia Terra	Sinai Planum
Arabia Terra	Solis Planum
Arcadia Planitia	Syria Planum
Argyre Basin	Syrtis Major Planum
Chryse Planitia	Tempe Terra
Daedalia Planum	Terra Cimmeria
Elysium Planitia	Terra Meridiani
Ganges Chasma	Terra Sabaea
Gusev Crater	Terra Sirenum
Hellas Planitia	Tharsis Montes
Hesperia Planum	Tyrrhena Terra
Isidis Planitia	Utopia Planitia
Lunae Planum	Valles Marineris
Margaritifer Terra	Vastitas Borealis
Noachis Terra	Xanthe Terra
Olympus Mons	

A total of 185 maps were assembled and integrated into the DDM-Mars.

Images

Images of Mars, its regions, its features, and related topics were assembled from various sources. These included: images of major geologic features for each of the 37 regions, images from each of the successful missions to Mars, and images of minerals, meteorites, volcanoes, and water-related feature.

Most of the images are from:

- Mars Orbiter Camera (MOC)
- Thermal Emission Imaging Spectrometer (THEMIS)
- Thermal Emission Spectrometer (TES)
- Mars Express High-Resolution Stereo Camera (HRSC)
- Viking 1 and 2 orbiters
- Viking 1 and 2 landers
- Phobos 2 satellite
- Mariners 4, 6, 7, and 9

- Pathfinder rover
- Spirit and Opportunity rovers

To date, 682 images have been added to the project.

Articles

Three types of articles were written for the project:

- **Reference Articles:** These basic fact sheets were compiled for each region and volcano on Mars, each Mars meteorite, and each significant mineral featured in the program. A total of 109 reference articles were written.
- Science Overviews: For major missions or topics, short articles summarizing the basic science were written. These were composed at an undergraduate level, aimed at undergraduate geology majors. A total of 30 science overviews were written.
- **General Audience Overviews:** Broad topics of interest to students and the general public alike were examined in longer articles. These topics include the hunt for minerals on Mars, histories of the early Mars missions, the challenges of sending humans to Mars, evidence for an ancient ocean on Mars, and how extreme life forms on Earth might shed light on the Mars life problems. A total of 10 of these longer articles were written.

Currently, there are over 80 pages worth of articles incorporated into the DDM-Mars, all aimed at an audience of undergraduate geology majors.

Interactive Features

Several interactive features were built into the program, including:

- **Tours:** Tours of topics in Mars science were written, designed, and built, including a tour of Martian geography and of the hunt for minerals on the Martian surface.
- **Exercises:** Exercises designed for lab classes were written, designed, and built. These were designed to illustrate different methods of thinking about Mars. For example, one exercise gives students information about a fictional mineral, then asks them to determine where on Mars such a mineral might be found, based on images, spectral data, and topographic profiles. Another exercise asks students to design a human mission to Mars, then launches the mission they designed to see how well they designed it.
- **Build a Slideshow:** One feature allows users to assemble a slideshow of their favorite Mars images, adding caption data and saving them.

Results

The results are presented both in screenshots below, and in the accompanying CD-ROM.

The Home Page: From this page, the user can access any part of the program.

The basic materials making up the DDM-Mars are the images (left), maps, and articles. See below.

The five map types for Argyre Basin in the southern hemisphere of Mars. From left to right: top: Viking mosaic cynlindrical projection, Viking mosaic sinusoidal projection. Middle: Geologic units map, thermal inertia map. Bottom: MOLA topographic map.

Part I: Exploring Mars

The first part of the DDM focuses on our exploration of Mars by examining the different missions that have visited the planet ("Missions"), stories of our discoveries ("History"), and the different regions we have identified and studied ("Regions"). See below.

Missions: The Mission section of the DDM details the 12 successful missions to Mars. Each mission page features images and figures related to the mission (below top), articles on the mission (below bottom), and maps produced by the mission.

History: This page presents the history of our exploration of Mars as a timeline. Users can click on the timeline to read longer articles about the topics (see below).

Regions: The Regions page features 37 regions (see Table 1 above). Each page in this sections features images (below) and articles related to the region, as well as an interactive map feature (see below).

Regions: The interactive map function for the regions pages allows users to overlay different maps on each other. In the example above, a thermal inertia map of Olympus Mons is laid on top of a Viking mosaic to illustrate variations in thermal inertia with albedo.

Part II: Mars Science

The second part of the DDM looks at different topics in Mars science, including Mars meteorites, minerals of Mars, and volcanism.

Meteorites: The Meteorite pages look at the SNCs: Shergotties, Nakhlites, and Chassignites.

Volcanoes: The volcanoes pages feature articles and images of 14 major volcanoes on Mars.

Part III: Interactive Tools

In addition to maps, images, and articles, the DDM-Mars includes serveral interactive features to help navigate through all the data.

Cliklists: Clicklists of maps, images, and articles, make finding material in the DDM-Mars easy.

000	Articles Menu	
Article#	Description Find Text	Menu Close
A#099	Olympus Mons: Basic Volcano Information	0
A#100	Pavonis Mons: Basic Volcano Information	
A#101	Amphitrites Patera: Science Overview	
A#102	Apollinaris Patera: Science Overview	
A#103	Arsia Mons: Science Overview	
A#104	Hecates Tholus: Science Overview	
A#105	Pavonis Mons: Science Overview	
A#106	Biblis Patera: Basic Volcano Information	
A#107	Ceraunius Patera: Basic Volcano Information	
A#108	Hadriaca Patera: Basic Volcano Information	
A#109	Jovis Tholus: Basic Volcano Information	
A#110	Meroe Patera: Basic Volcano Information	
A#111	Nili Patera: Basic Volcano Information	
A#112	Peneus Patera: Basic Volcano Information	
A#113	Tempe Fossae: Basic Volcanic Information	
A#114	Tharsis Tholus: Basic Volcano Information	
A#115	Tyrrhena Patera: Basic Volcano Information	
A#116	Ulysses Patera: Basic Volcano Information	
A#117	Uranius Patera: Basic Volcano Information	
A#118	Uranius Tholus: Basic Volcano Information	
A#119	Dar al Gani Meteorite: Basic Information	
A#120	Dhofar 378 Meteorite: Basic Information	
A#121	Dhofar 019 Meteorite: Basic Information	
A#122	EETA79001 Meteorite: Basic Information	
A#123	Grove Mountain 99027 Meteorite: Basic Information	
A#124==	Los Angeles Meteorite: Basic Information	
A#125	LEW88516 Meteorite: Basic Information	
A#126	MIL03346 Meteorite: Basic Information	
A#127	NWA480/1460 Meteorite: Basic Information	
A#128	NWA817 Meteorite: Basic Information	
A#129	NWA856 Meteorite: Basic Information	
A#130	NWA 1058/110 Meteorite: Basic Information	
A#131	NWAI195 Meteorite: Basic Information	v
	I NEALBAN MATGORITAL MARIC INTORMATION	

Tours: Interactive, self-guided tours lead students through various issues in Mars science.

After the poles, the dichotomy of the Martian terrain stands out best. The northern hemisphere of Mars is smooth, flat, low, and young. The southern hemisphere is elevated, cratered, rough, and old. Several theories try to explain why the hemispheres are so different. One theory suggests that an ocean once covered the northern hemisphere, depositing mud and carving shorelines.

Navigate through this tour using the buttons below:

How Do We Learn About Minerals on Mars?

Minerals of Mars

Spectroscopy

When light hits a mineral, a similar process occurs: some wavelengths are absorbed, others are reflected. The graph of reflected and absorbed wavelengths is called a spectrum. The secret to spectroscopy is that different minerals have different spectra.

Using a spectrometer, a researcher can bounce light off a rock, record what wavelengths bounce back, and make an educated guess on what minerals are present in the rock.

Seven of the satellites that have gone to Mars carried spectrometers and measured the light bouncing off its surface. From these data, planetary scientists have started investigating which minerals are present on the surface of Mars.

In this spectrum (black line), the green wavelenths are being absorbed and the blue are being reflected. The red wavelengths are being reflected also, but not so much as the blue.

Navigate through this tour using the buttons below: Intro What? Why? How? Spectroscopy I Spectroscopy II Chemical Data Meteorites Olivine I Olivine II Olivine III Carbonates I

Return to Carbonates II Hematite I Hematite II Home Base

Slideshow: The Build-a-Slideshow feature allows users to build presentations of their favorite images and present them.

Exercises: The mineral hunting exercise gives users information about a fictious mineral, then asks them to find that mineral on Mars, using images, spectral data, and topographic profiles. (See below).

About Parbylte

Sive Me a Hin

low-grade metamorphic mineral usually associated with iron

sulfates, and carbon of be identified spec

RES VALLIS

by may shoose to land anyhere in this region. Use the upt, topographic profiles, mages, and spectra to determ where the darbyite is hiding. Within the mineral hunting exercise, the interactive maps allow students to infer relationships between thermal inertia, geology, topography, and albedo.

The spectral component of the mineral hunting exercise exposes users to how we identify minerals and compositions on the surface of Mars.

The mineral spectra used are actual spectra from Mars, obtained by the Thermal Emission Spectrometer (TES), and other satellites.

Interpreting Spectra

000

For our purposes, the important parts of the spectrum are the peaks and troughs.

Extra Info

Where the spectrum peaks is where the most light is being emitted. Where it troughs is where the least light is emitted.

Different minerals produce spectra with peaks and troughs in different places.

Exercises: Build a Mars Mission. The Build a Mars Mission exercise allows users to desgin a human mission to Mars, and asks them to think about some of the different issues involved in planning such a mission. See below.

	Intro Sc	hedule Crew	Science	Vehicles La	anding Site Launch		
		Ch	ioose Yoi	ur Crew -			
Profession Nick a profession to read about it.	Science Value	Public Value	Risk Level	#	Pilot		
Pilot	0	1	0	1	Advantages		
Engineer	1	0	0	1	to naving one.		
Computer Specialist	1	0	0	0	- Understands flying, manuevering, and operat-		
Physician	1	0	0	1	ing aircraft. If the craft's		
Geologist	10	0	0	1	goes out at any time, a		
Biologist	10	1	0	1	pilot on board would be		
Meteorologist	7	0	0	0			
Technician	3	0	0	0	Trained pilots often make excellent leaders, espe-		
Psychologist	5	2	1	0	cially if they have military		
Journalist	5	10	2	1	training bening them.		
Teacher	2	15	2	1			
Student	2	20	3	0	Total Crew 7		
Cost & Weight			Science &	Public Value	Risk		
P P	Cost	Weight (kg)	No Geologis	t = -15 Science			
Base per Person: Eood & Water / Person per	\$200,000,000	75	Crews	4 = -15 Science	No Physician = +25 risk Crew < 4 = +10 risk		
Day):	\$30		Ne leure t		No Engineer = +10 risk Crew > 7 = +10 risk		
Life Support (Person per	\$3		No Journalis	= -15 Public	No Pilot = +5 risk		
Number of Days:	919	from "Schedule"	Science Va	lue: 29			

		Intro	Schedul	e Crew	Science Vehi	cles Lar	nding Site	Launch
				- Cho	bose Your S	cienco	9	
Exp Click an experiment t	eriment	Cost (millions)	kg	Science Value	Public Value	Risk Level	#	Mass Spectrometer Main Fields:
Mass Spe	ectrometer	2.5	10	9	5	0	1	Science Value: 9
Thermal/IR Spe	ectrometer	1.5	5	6	3	0	1	Public Value: 5
Can	nera Array	2.5	50	10	10	0	1	
UV Sensor Pressure Sensor		0.1	10	4	0	0	1	is similar to the one sent to Mars
		0.1	5	2	0	0	1	on the Beagle 2 lander (though Beagle 2 crashed and the instru-
Temperate	ure Sensor	0.1	5	2	0	0	0	ment was never used).
N	Wind Gauge 0.05		10	3	0	0	0	It will be able to detect carbon.
Rock Grinde	ers & Drills	1.5	50	8	3	0	0	and distinguish between organic
Biology E	xperiment	1.5	30	10	10	0	0	be able to distinguish between
	APXS	1.7	10	7	2	0	0	carbon-12 (biological carbon) and carbon-13 (non-biological).
Sample Retu	rn (100 kg)	15.5	100	10	10	10	0	
Thin Sectio	n Package	0.5	100	9	7	0	0	The mass spec. will also be useful for studying rocks. By measuring
	Balloon	2	400	5	4	0	0	argon and potassium isotope
Se Science Exp	ismograph eriment S	0.5	100	7	3	0	0	be able to determine when rocks formed, providing very valuable age information.
Total Cost:	\$6,700,00	0	Distri		Science Value	:	31	
Total Weight:	80 kg		RISK:	0	Public Value		18	

000			Exercises	or Fun & Profit			
build a Pre-launch sequence	ma	rs	mission			Return to Exercises	Return to Home Base
í.		Intr	Schedule Crew Scient	e Vehicles	Landing Site Launch		
Click on a vehicle for a descrin	tion						
# Launch Vehicles	Science Value O	Risk Level	Vehicle: Orbiting S Purpose: Sample I	ample Lab	1	C	1 . A.
⁰ Atlas V 431	0	1			TEAS DISE	and the second s	- 98
Delta IV Heavy	0	2	Cost: \$150,000,000			50 10	
You need at least 1 launch ve # Transit Vehicles • Artificial Gravity Craft • Zero-G Large Craft • Sleeper Craft You need at least 1 transit veh	hicle, but ca 2 1 1 icle, but car	an have m 2 5 3 n have me	This optional vehicle requires a set the large price tag). The Orbiting : Earth, awaiting the return of the M Mars rock samples. The samples aboard the OSL - they will never b Advantages	parate launch (hence Sample Lab will orbit ars astronauts with will be analyzed sole e brought to Earth.			
# Mars Habitats 0 Small Habitat 0 Medium Habitat 0 Large Habitat You need at least 1 habitat, but	1 4 8 ut can have	0 0 1 more.	 Isolating all wars samples on the contamination - both of the Earth a Many administrators and scientist Mars rocks back to Earth might alls microbes that will endanger human samples in orbit would allow scien for evidence of Martian life without life. 	OSL will prevent and the Mars samples fear that bringing to bring back Martian bs. Isolating the sists to explore them endangering Earth's		X	
# Mars Launch 0 Small Capacity 0 Medium Capacity 0 Large Capacity You need at least 1 Mars laund	0 4 8 ch, but can	0 0 1 have mor	Disadvantages - Expensive to build, launch, and co - Very few scientists will be able to rocks, since all work must be done	perate work with the Mars in orbit		tar	
# Optional Vehicles			- Limits the range of experiments t	hat can be performed	1		
0 Orbiting Sample Lab	10 3 9	4 6	Total Vehicle Costs:	\$0	Science Value:	0	
0 Unpressurized Rover	7	5	Additional Launch Weight:	0 kg	Risk Level:	0	

Exercises for Fun & Profit 000 build a mars mission Return to Exercises Return to Home Base Intro Schedule Crew Science Vehicles Landing Site Launch **Choose Your Landing Site** Click a landing site to read about it. Science Value Public Value Risk Level Landing Site Athabasca Valli Eos Chasma 0 Athabasca Vallis 💦 0 Melas Chasma • Elysium Planitia Isidis Planitia . **Gusev** Crater Terra Meridiani • Athabasca Vallis is at the mouth of a wide outflow channel near the Pathfinder Vallis landing site. It shows much evidence of past water activity, including bea tufiul streamlined mesas, deep grooves, and a wide array of debris. However, because most of the rocks are debris from the outflow channels, little informati about past climate and geologic history can be uncovered. This is the younger because most where we evidence of there are all fixed and this the younger and the past climate and geologic history can be uncovered. This is the younger the past climate and geologic history can be uncovered. This is the younger and the past climate and geologic history can be uncovered. This is the younger the past climate and geologic history can be uncovered. This is the younger the past climate and geologic history can be uncovered. This is the younger the past climate and geologic history can be uncovered. This is the younger the past climate and geologic history can be uncovered. This is the younger the past climate and geologic history can be uncovered. This is the younger the past climate and geologic history can be uncovered. This is the younger the past climate and geologic history can be uncovered. der Are ling beasoour past climate and geologic history can be uncovered. This is the you place on Mars where we see evidence for large-scale fluvial activity. Bein nawer the question "When was the last episode of large-scale fluvial activity ery important for our understanding of Mars. able to na TES measurements show that the surface of Athabasca is probably covered in a thick coat of dust.

000		Exercises fo	r Fun & Profit	
build a m	nars m	nission		Return to Exercises Return to Home Base
í -	Intro	Schedule Crew Science	Vehicles Landing Site	Launch
Funding Check	Congress has allotted this mission:	\$10,000,000,000	As you've designed it, this mission will cost:	\$3,866,880,327
Risk Check	The risk level must be under:	50	As you've designed it, this mission's risk is:	Please note: \$500,000,000 is added for administrative
Public Check	The public interest level must be over:	75	As you've designed it, this mission's public interest level is:	57
Science Check	The science value must be over:	150	As you've designed it, this mission's science value is:	72
Weight Check	The weight must be under:	0 kg	As you've designed it, this mission's weight is:	39,203 kg
Logistics Checl You have more crew memb number of crew members y	C bers than habitat sp ou're bringing, or a	Lace. Either reduce the dd an extra Mars habitat. a fr la 9	-aunch I you pass all the checks, th re go for launch. You may m urther adjustments to your m aunch the mission by hitting reen button. Iame Your Mission	en you nake hission, or the large

Before the mission can be launched, the mission must satisfy several requirements: it must be under budget (though the user can petition Congress for additional funds), must have an acceptable risk level, sufficient public interest, high scientific value, and come in under weight limits. Also, several logistical requirements must be met. For example, if the user has decided to bring samples back, he/she must have specified a plan for quarrentining or decontaminating the samples.

Once a user has met all the requirements for a mission, he/she can launch the mission and follow its progress

Once cleared for launch, the user must actually launch the mission, choosing launch times based on weather conditions at Cape Canaveral. If the user chooses dangerous launch conditions, the risk of the mission blowing up on launch increases.

Random Image Generator: Finally, for users just wanting to marvel and the beautiful images of Mars that have come back in recent years, the project includes a random image generator that produces a new image (and caption) each time it is loaded.

	e Fillai Taliy
Images:	682
Captions:	35,000 words - 85 pages
Articles:	34,000 words - 80 pages
Maps:	185
Lines of Code:	Incalculable.

Table 2: The Final Tally

Discussion

As it stands, this project can be used as a teaching tool or reference for undergraduates, and for others interested in science.

The next stage in this project will be to create more exercises and tours, add more in-depth articles, and expand the caption data and images. Though this project served as my Division III thesis for Hampshire College, I will continue working on this project throughout graduate school.

Acknowledgements

The author gratefully acknowledges Chris Condit for his constant advice, support, and inspiration in producing this project. She would also like to thank her Hampshire Division III committee members: Darby Dyar, Steven Roof, and Kenneth Hoffman.

References

Condit, C (1999) Geol. Soc. Am. Abst. With Prog. v.33 no. 6. Condit, C (2000) Univ. Mass. Dept. Geosciences Contribution Condit, C (2001) Geol. Soc. Am. Abst. With Prog. v34 no.6. Condit, C and TM Boundy (2002) Computers & Geoscience 25.